
Nonlinear resonant tunnelling in a novel one-dimensional semimagnetic semiconductor

superlattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 1667

(http://iopscience.iop.org/0305-4470/32/9/013)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 1667–1674. Printed in the UK PII: S0305-4470(99)99095-9

Nonlinear resonant tunnelling in a novel one-dimensional
semimagnetic semiconductor superlattice

Xiaoshuang Chen†, Wei Lu‡ and S C Shen‡
† Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemum-gu, Seoul
130-012, Korea
‡ National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese
Academy of Science, Shanghai 200083, People’s Republic of China

Received 9 November 1998

Abstract. A new two-dimensional map is proposed to investigate the nonlinear and quantum
effects on the tunnelling of carriers (electrons or holes) in a novel one-dimensional semimagnetic
semiconductor superlattice. The magnetic-polaron effect resulting from the exchange interaction
between the carrier in a mesoscopic dot and localized magnetic-ion spins leads to a nonlinear nature
of the effective Schr̈odinger equation for the carrier. We find gaps and different multistability in the
tunnelling properties of carriers that depend critically on the wavevector of the injected carriers. In
particular, when the nonlinear coefficient is increased new nontunnelling regions appear adjacent
to the regular instability regions. The properties can be useful for the transmission of information
in microelectronic devices.

1. Introduction

The successful molecular beam epitaxy growth of semimagnetic semiconductor
heterostructures and low-dimensional quantum structures has recently stimulated an
investigation of the properties of magnetic polarons formed from free carriers in low-
dimensional quantum structures [1–6]. The strong exchanging interaction between the charge
carriers and the magnetic ions in diluted magnetic semiconductor structures can lead to spin
polarization of the magnetic ions [7], due to localized carriers, and hence to a reduction in the
total energy of the system, that is, magnetic polarons are free carriers dressed by the induced
magnetic polarization field of the magnetic ions. Such a complex, consisting of a charge
carrier and magnetic ions with locally aligned spin, is known as a magnetic polaron. In one-
dimensional systems these polaronic effects should be strong and lead to localized soliton-like
states.

On the other hand, resonant tunnelling through quantum dot arrays of various geometries
has been considered extensively from a physical standpoint and for its application in future
nanometre electronics [8–10]. Ulloaet al and Wuet al have considered a linear array of
mesoscopic potential wells separated by square potential barriers. Propagation through such
an array reveals an interesting structure of tunnelling plateaus, which could form the base for
a quite different type of transistor action. Experiments with such geometries have also been
undertaken [11]. The phenomenon depends crucially on the linear superposition principle
[10]. A natural question arises in this context, namely how spatial nonlinearities affect resonant
tunnelling. Nonlinearity can arise in semimagnetic semiconductors when an electron or hole
interacts with the localized magnetic-ion spins, which reacts changing the electron or hole
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state by a feedback process [1, 2, 12, 13]. The result is often a localized excitation which
extends over many atomic dimensions with an exchange field arising from the magnetic polaron
interaction with a carrier state. The exchange field leads to a nonlinear term in the effective one-
particle potential [1, 2, 12, 13]. The effect of a one-dimensional superlattice is to place such
localized excitations in a strong periodic potential with a period comparable to the excitation
characteristic length. In addition, quantum effects in low-dimensional structures are also
known to be important. The nonlinear-response characteristics of low-dimensional structures
are rich in properties, and unique to these periodic structures. The occurrence of nonlinearities
opens up the possibility of studying new and interesting phenomena in semiconductor devices
[14–16]. For example, Hawrylaket alhave studied the tunnelling of carriers in a quantum-dot
array and found the intensity-dependent gaps in the transmission spectra. In this paper, a
novel one-dimensional semimagnetic semiconductor superlattice, a linear array of mesoscopic
quantum dots separated by square potential barriers, is considered. We propose a new two-
dimensional map method to study the effect of the nonlinearity on the resonant tunnelling of the
carriers, and discuss the relation between the carrier transport properties and the injected carrier
energy. In particular, we shall show that the combination of nonlinear and quantum effects
leads to a very complex periodic and chaotic spatial behaviour of the carrier wavefunction.
Tunnelling studies demonstrate the multistability, hysteresis and the opening of gaps in the
energy spectrum.

2. Model

We consider a novel one-dimensional semimagnetic semiconductor superlattice, which is a
linear array of unit cells of periodicitya, assumed with an effective radiusr⊥0 normal to the
growth direction, thez-axis. The unit cell consists of a mesoscopic dot of widthd with low
Mn concentration and a square barrier of widthb with a high Mn concentration. Figure 1(a)
shows schematically a possible realization of the proposed device geometry. The shaded
areas represent the barrier region. Figure 2(b) is the potential profile of the one-dimensional
semimagnetic semiconductor superlattice in growth direction. Due to the magnetically induced
localization of carrier (electron or hole) in a single mesoscopic dot, in the presence of a finite
initial external magnetic or nonzero internal magnetization, the exchange interaction of the
carrier states of the mesoscopic dot with the localized magnetic moments of the Mn ions in the

Figure 1. (a) The structural geometry of a novel one-dimensional semimagnetic semiconductor
superlattice. The shaded areas represent the barrier region. (b) The potential profile of the
constriction extending along thez-axis, the growth direction.
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Figure 2. Orbit of the map (xl, zl ) corresponding to the period-3 Poincaré–Brikhoff chain, with
|I0|2 = 1.0, α = 10−2 Ryd∗. The injected carrier wavevectorka is (a) 6.530 and (b) 6.546. In
both (a) and (b) the same trajectory is plotted.

novel geometry gives rise to an effective attractive one-particle potential in the Cd1−xMnxTe
barriers, which serves to further enhance the local effective fields and promotes the formation
of a magnetic polaron. The exchange field arising from the magnetic polaron interaction with
a carrier state will give a nonlinear term [1, 2, 12, 13]. In the one-dimensional superlattice,
the antiferromagnetic interaction between Mn ions dominates in the barrier, and we expect
the barrier to be in a ‘spin-glass’ phase. The mesoscopic dot with a low Mn concentration is
assumed to be a paramagnetic phase. In the mean field approximation (MFA), an approximate
Hamiltonian is derived by including the nonlinear magnetic polaronic term in the effective
potential in the low Mn concentration Cd1−xMnxTe mesoscopic dot. A simple nonlinear
Schr̈odinger equation for9(Er) is as follows [12, 13]:

− h̄
2

2m
52 9(Er)−

[
V0 + VmB5/2

(
gMnµBBeff

kTeff

)]
9(Er) = E9(Er) (1)

in the mesoscopic dot, and

− h̄
2

2m
52 9(Er) = E9(Er) (2)

in the barrier. Where V0 is the barrier height (the energy being measured from the top of
the barrier),Vm = 5

2σxβN0Jz is the amplitude of the exchange potential,x is the average
effective concentration of Mn ions,Jz is the spin of free carrier, andσ andTeff are parameters
describing approximately the antiferromagnetic interaction of isolated Mn-ion spins. The
Brillouin functionB5/2 describes the paramagnetic susceptibility of the Mn ion with spin5

2 in
the effective magnetic fieldBeff at the effective temperatureTeff . SinceV0 only depends on
the variablez, we can write the wavefunction9(Er) = φ(z)φ(|Er⊥|)withφ(|Er⊥|) the exponential
decay function of decay lengthr⊥0 andEr⊥ the two-dimensional vector in the plane perpendicular
to the growthz-axis. The effective fieldBeff is a sum of the external fieldB0 and the exchange
field acting on the Mn-ion spin as follows:

Beff = B0 +Bex (3)

where the exchange fieldgMnµBBex = 5
2βJz|φ(z)|2 arises from the magnetic polaron

interaction with a carrier stateφ(z). The exchange field depends on the probability|φ(z)|2
of the carrier being in the position of the magnetic ion.N0 is the number of cations per unit
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volume. We note that at very low temperatures (T < 1 K) for the Mn concentrations of interest
a spin-glass freezing takes place, which cannot be described within the MFA, and is even
beyond the scope of our model Hamiltonian, which neglects long-range dipolar anisotropies.
Nevertheless, such a spin-glass freezing does not qualitatively affect the static properties of the
magnetic polaron, which depend essentially on local-spin correlations, and we conclude that
MFA is a reasonable approximation down toT ∼ 0 K for our problem. Actually, it is in the
opposite limit of high temperature that the MFA fails to describe the magnetic polaron, because,
then the magnetic fluctuations and entropy terms cannot be neglected [17, 18]. Therefore, we
shall restrict our analysis to the temperaturekBTeff = 10 meV, where the MFA is still a good
approximation. Next, we shall discuss another problem, the limit of magnetic fields. On the
basis of [19], we can see that the behaviour of the Brillouin functionBJ (x) is qualitatively
similar for all values ofJ . It increases linearly withx for smallx but saturates at 1 for large
x. It represents in large magnetic fields that the Brillouin function approaches saturation and
is independent of the carrier stateφ(z), thus the nonlinear term in the effective Hamiltonian
disappears. In this case, we recover a linear Schrödinger equation, which can be solved
in the classical Kronig–Penney model. The changeover in behaviour occurs whenx ∼ J ,
corresponding to a field of order 1.5T at temperature<10 K for J = 5

2. Therefore, for
generality and simplicity, we take into accountkBTeff = 10 meV, and the small or medium
field, in which the linear term in the expansion of the Brillouin functionB5/2(x) is a good
approximation. In our study we limit ourselves to zero external magnetic field and narrow
dots. We consider the quantum dot as an attractive potential and the carrier energy to be larger
than the potential barrier. The carrier transmission in the attractive potential is well treated
by Bohm [20]. Here, we mainly study the effect of a nonlinearity induced magnetic-polaron
on the tunnelling of a carrier in the system of a one-dimensional superlattice. To understand
the combined effects of nonlinearity and periodicity it is sufficient to replace the effective
potential of the dot by a suitable chosenδ-function potential. Similar models have been
proposed to study electronic transport in the nonlinear Schrödinger equations [15, 16, 21, 22].
The resulting Schr̈odinger equation for a system withN cells can be reduced as the following
nonlinear difference equation:

φ(l + 1) + φ(l − 1) = 2

[
cos(ka)−

(
V0a

2
+
αda

2
|φ(l)|2

)
sinka

ka

]
φ(l) (4)

wherek is the wavevector associated with the energyE = k2. In the absence of nonlinearity
(α = 0), the wavefunctions are Bloch states= exp(ikla) characterized by a Bloch indexk. In
the nonlinear case we must retain the information about the phase of the wavefunction and the
amplitude. We propose a new two-dimensional map method, in which a local transformation
to polar coordinates and a subsequent grouping of pairs of adjacent variablesφ(l − 1), φ(l)
turn equation (4) to the following two-dimensional map M:

xl+1 =
[
2 cos(ka)− V0a

(
1 +

1

2

dα

V0
(wl + zl)

)
sinka

ka

]
(wl + zl)− xl

zl+1 = −zl +
1

2

xl+1
2 − x2

l

wl + zl

(5)

wherewl =
√
(x2
l + z2

l + 4J 2,xl = 2rlrl−1 cos(θl−θl−1), zl = r2
l −r2

l−1 withφ(l) = rl exp(iθl)
andJ is the conserved current, i.e.,J = rlrl−1 sin(θl−θl−1). The map M can contain bounded
and diverging orbits. The former ones correspond to transmitting waves whereas the latter
correspond to waves with amplitude escaping to infinity, this means that the amplitude is
diverging, and hence do not contribute to wave transmission.
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3. Result and discussion

For generality we consider the injected carrier intensity to be unit. In order to analyse the carrier
tunnelling properties, the orbits of the map M are studied by changing the injected carrier vector.
In our calculation the dot width of 30 Å and periodic length of 50 Å are considered so that
the spin-dependent Heisenberg-type interactions contain only thez components of relevant
angular momenta. The barrier potential is taken from [13] with low Mn concentration (∼0.1)
in dot and high Mn concentration (∼0.5) in barrier. The coupling constantα depends on the
number of Mn ions, for example,α = 10−2 Ryd∗ is estimated for 10 cations per dot [16].
For zero nonlinearity, the solutions of equation (4) are plane waves, and we explicitly know
the trajectories of M, linear in this case. The dynamical system included by M is integrable
and the most of orbits of an integrable system are stable. The standard band structure can
then be obtained from equation (4). On the other hand, for finite nonlinearity, we must retain
the information about the phase and the amplitude. This problem is simplified due to the
two-dimensional map M, i.e., the conservation of the currentJ = rlrl−1 sin(θl − θl−1). Thus,
M becomesa priori a nonintegrable mapping. We find that such a mapping on the phase
plane (xl, zl) exhibits two kinds of trajectories: bounded and diverging orbits, for example
figures 2(a) and (b). The former ones correspond to transmitting carrier wavefunctions whereas
the latter correspond to the wavefunctions with amplitude escaping to infinity, this means that
the amplitude is diverging, and hence does not contribute to carrier transmission. In figure 2
we show one orbit corresponding to a period-(3) Poincaré–Birkhoff resonance zone, where
we take the injected carrier intensity|I0|2 = 1.0, α = 10−2 Ryd∗ and the wavevectorka
to be 6.530 and 6.546, respectively. The structure on the phase plane (xl, zl) is organized
by a hierarchy of a periodic orbit surrounded by quasiperiodic orbits. In figure 2(a) the
regular periodic orbit surrounding the three fixed points corresponds to carrier transmission
through the system. In figure 2(b) on the other hand, the same trajectory is shown for a larger
wavevector. We observe that a thin chaotic layer has developed that surrounds the separatrix
but also that some scattered points escaping to largerz-values are visible. This trajectory
corresponds to nonpassing carrier states. As the concentration of Mn ions increases, hence the
coupling constantα increases, some periodic orbits become unstable and lead to stochasticity.
This corresponds to passage from a carrier transmitting to a nontransmitting region. To further
understand the effect of different wavevectork on the carrier transport properties, in figure 3 we
show one orbit corresponding to period-(9) Poincaré–Birkhoff resonance zone with the injected
carrier intensity|I0|2 = 1.0, and the wavevectorka being 6.5743 and 6.5744, respectively. We
find that the number of fixed points corresponding to carrier transmission through the system
is increased when the wavevector increases. The carrier transmission through the system
shows different stability for different wavevectors, which is referred to here as multistability.
The tunnelling studies demonstrate that different multistability appears in the one-dimensional
superlattice by changing the wavevectork. We also show the same trajectory in figure 3(b) for
a larger carrier wavevector and nonpassing carrier states.

In our model without exchange interaction the Schrödinger equation is linear, which can
be solved in the classical Kronig–Penney model. The tunnelling can occur if the energy of
the transmitted carrier is within the allowed energy spectrum of the Bloch band, irrespective
of the amplitude of the carrier wavefunction or the flux of carriers. This is no longer true in
the nonlinear case. In order to directly investigate the transmission properties of the injected
carriers in nonlinear one-dimensional superlattice, we numerically iterate the discrete nonlinear
equation (4). For the initial condition [φ0, φ1] = [1, exp(ika)] we compute the transmitted
carrier wavefunction amplitudeT for a one-dimensional superlattice with 103 nonlinear unit
cells with different nonlinear parametersα and wavevectorsk. In figure 4, we plot the
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Figure 3. Orbit of the map (xl, zl ) corresponding to the period-9 Poincaré–Brikhoff chain, with
|I0|2 = 1.0,α = 10−2 Ryd∗. The injected carrier wavevector is (a) 6.5743 and (b) 6.5744. In both
(a) and (b) the same trajectory is plotted.

transmission coefficientt = |T |2 as a function of input carrier wavevectork for various
nonlinear valuesα (exchanging interaction). First, we note that there are clear transmission
gaps whose width (ink space) depends onα. Withα increasing the width of each gap increases
and, in addition, more gaps develop in the range between two gaps. Second, this process of gap
creating starts in the low-energy range and also extends, with further increasedα, to the high-
energy region. For example, in figure 4(b) the transmission gaps occur only in the low-energy
range, and in figure 4(c) the transmission gaps also extend to a high-energy range. Furthermore,
it can also be seen that more gaps appear in the transmission bands and the transmission bands
become very narrow in the low-energy range. Finally, above criticalα-values neighbouring
gaps merge leading to a cancellation of transparency. Due to the nonlinearity, the transmitting
intensity of an incident carrier on the one-dimensional superlattice is a nonlinear function of
the carrier intensity. Thus the transmission coefficient as a function of the carrier intensity
is not a constant. Then, for a given value of the intensity, there may be several values of the
transmission coefficients. The nonlinearity leads to the multistability of the carrier transport.
Also note that our effect provides a genuinely nonlinear mechanism for creating a multistable
system, that is, a multilevel system.

4. Summary

We have studied the tunnelling of carriers in a novel one-dimensional semimagnetic
semiconductor superlattice. The effect of the nonlinearity is considered in an effective potential
in the Schr̈odinger equation. In general, we find that the presence of nonlinearity in the
one-dimensional semimagnetic semiconductor superlattice substantially alters the tunnelling
properties of the carriers. When the nonlinearity is increased new nontransmitting regions
appear adjacent to the regular instability regions. Consequently, for a given carrier intensity
|I0|2, an appropriate change of the wavevector of the carriers can switch the carrier tunnelling
from a transmitting to a nontransmitting region. It is then possible by a simple amplitude
or injected energy modulation of the injected carrier to transmit binary information to the
other side of the transmission line in the forms of zeros (nontransmitting regions) and ones
(transmitting region). Therefore, it is possible that these properties can be used to develop
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Figure 4. Transmission coefficient as a function of the wavevectork with α equal to (a) zero (linear
case), (b) 0.25× 10−2 Ryd∗ and (c) 10−2 Ryd∗. The injected carrier amplitude is taken as a unit.

some new microelectronic devices for the transmission of carrier information.
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